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Lecture note 6B: Optimal control theory

This note gives a brief, non-rigorous sketch of basic optimal control the-

ory, which is a useful tool in several simple economic problems, such as

those in resource economics and environmental economics.

Consider the dynamic optimization problem

max

∫ ∞
0

e−rtf(x(t), S(t), t)dt (1)

subject to

Ṡ(t) = g(x(t), S(t), t) (2)

S(0) = S0 historically given (3)

S(t) ≥ 0 for all t (4)

where f and g are continuous and differentiable functions (and in many

cases concave in (x, S)), and r is an exogenous positive discount rate.

The variable S(t) is a stock variable, also called a state variable, and

can only change gradually over time as given by (2). The variable x(t),

on the other hand, is a variable that the decision maker chooses at any

time. It is often called a control variable. In many economic problems

the variable x(t) will be constrained to be non-negative.

Remark 1: In the problem above there is only one control variable

and one state variable. It is straightforward to generalize to many control

and state variables, and the number of control variables need not be equal

to the number of state variables.

Remark 2: The constraint (4) is more general than it might seem, as

we often can reformulate the problem so we get this type of constraint.

Assume e.g. that the constraint was S(t) ≤ S̄.We can then reformulate

the problem by defining Z(t) = S̄−S(t), implying that Z(t) ≥ 0. In this

case the dynamic equation (2) must be replaced by Ż = −g(x(t), S̄ −
Z(t), t) and S(t) in (1) must be replaced by S̄ − Z(t).
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The current value Hamiltonian

The current value Hamiltonian H is defined as

H(x, S, λ, t) = f(x, S, t) + λg(x, S, t)

where λ(t) is continuous and differentiable. The variable λ(t) is often

called a co-state variable. This variable will be non-negative in all prob-

lems where "more of the state variable" is "good". More precisely: The

derivative of the maximized integral in (1) with respect to S0 is equal

to λ(0). For this reason λ(t) is also often called the shadow price of the

state variable S(t).

Conditions for an optimal solution

A solution to the problem (1)-(4) is a time path of the control vari-

able x(t) and an associated time path for the state variable S(t). For

optimal paths, there exist a differentiable function λ(t) and a piecewise

continuous function γ(t) such that the following equations must hold for

all t:

∂H(x(t), S(t), λ(t), t)

∂x
= 0 (5)

λ̇(t) = rλ(t)− ∂H(x(t), S(t), λ(t), t)

∂S
− γ(t) (6)

γ(t) ≥ 0 and γ(t)S(t) = 0 (7)

Limt→∞e
−rtλ(t)S(t) = 0 (8)

Remark 3: If x(t) is constrained to be non-negative, (5) must be

replaced by ∂H
∂x
≤ 0 and ∂H

∂x
x(t) = 0.

Remark 4: If we know from the problem that S(t) > 0 for all t, we

can forget about γ(t), since it always will be zero.

Remark 5: Condition (8) is a transversality condition. Transversality

conditions are simple in problems with finite horizons, but considerably

more complicated for problems with an infinite horizon (like our prob-

lem). The condition (8) holds for all problems where λ(t) ≥ 0.

Remark 6: If f and g are concave in (x, S) and λ(t) ≥ 0, the condi-
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tions (5)-(8) are suffi cient for an optimal solution. If we can find a time

path for x(t) and for S(t) satisfying (5)-(8) in this case, we thus know

that the time paths (x(t), S(t)) are optimal.

Remark 7: As mentioned in Remark 1, it is straightforward to gener-

alize to many control and state variables. If there are n state variables,

there are also n co-state variables (λ1, ...λn), n Lagrangian multipliers

(γ1...γn), and n differential equations of each of the types (2) and (6).
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